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ABSTRACT 

The mathematical treatment of multiple scattering processes leads to formidable 
functional equations. It is of great importance to find simple analytical expressions 
which provide useful approximations to the exact solutions. H. C. van de Hulst has done 
much along these lines. 

This paper provides several such approximations for the cases of conservative 
isotropic and Rayleigh scattering in slabs. The approach is to find the transmitted 
and reflected fluxes for these cases for a wide range of slab thicknesses using high- 
precision numerical methods. Then simple analytical expressions are derived using 
idealized models. These are evaluated numerically, and the results are compared against 
the earlier calculations. 

One of the interesting results is that, so far as reflected and transmitted fluxes are 
concerned, there is little difference between conservative isotropic scattering and Rayleigh 
scattering. 

This paper raises an interesting mathematical question: What is the underlying reason 
for all of these flux equivalences, and how far does this equivalence extend to other 
situations ? 

1. INTRODUCTION 

The reflection and transmission properties of media which absorb and multiple- 
scatter energy have been studied by many investigators [l]-[4] employing various 
analytical, numerical and approximate methods. Since even relatively simple 
physical models lead to complicated functional equations, it is clear that simple, 
approximate formulas are needed for many applications. Such formulas must 
first be tested for accuracy and range of validity against accurate numerical 
values [5]-[IO] or exact analytical expressions. 

In a recent paper, the remarkable accuracy of a simple formula for reflected 
flux from an isotropically scattering slab was established over virtually all optical 
thicknesses [7], [8]. 

In this paper, we compare fluxes of reflected and transmitted radiation for 
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several scattering models. Two of the models-isotropic scattering in a slab, as 
treated by invariant embedding, and Rayleigh scattering in a slab-lead to 
sophisticated numerical calculations. Two other models yield simple formulas 
for emergent fluxes. Fluxes determined from all models are in remarkable agree- 
ment for all optical thicknesses from zero to fifty. 

2. SLAB WITH ISOTROPIC SCATTERING 

2.1. Exact Equations for Reflection and Transmission 

Consider a horizontal, homogeneous, absorbing and isotropically scattering 
plane-parallel medium of finite optical thickness x. Monodirectional radiation with 
direction cosine u relative to the downward directed vertical is uniformly incident 
on the top surface of the slab. The case of normal incidence (U = 1) is of particular 
interest. The net flux per unit area normal to the incident rays is r. The albedo for 
single scattering is h (0 < h < 1). We shall here consider only the case of con- 
servative scattering, X = 1. The lower surface is a completely absorbing barrier. 

Let r(u, U, x) be the intensity of the multiply-scattered radiation which emerges 
from the top of the medium with direction cosine u relative to the upward directed 
vertical. Let t(u, u, x) be the intensity of the diffusely transmitted radiation emerging 
from the bottom with direction cosine II relative to the donward vertical. The 
function t(u, U, x) refers to radiation which has interacted one or more times with 
the medium. The intensity of the reduced incident radiation which is directly 
transmitted is @(u - v) exp(-x/u), where 6( ) denotes the Dirac delta function. 
This corresponds, of course, to a net reduced incident flux of ru exp(-x/u). 

Reflected and transmitted fluxes computed via the invariant imbedding method 
(see Refs. [4], [7], [ll], and [13]) are denoted pr(u, x) and q(u, x). 

For isotropic scattering, the reflected flux is defined to be 

p(u, x) = 27~ sl r(z, u, x)zdz, 

the diffusely transmitted flux, 

s 

1 
T(U, x) = 277 t(z, u, x)zdz, 

0 

(1) 

(2) 

and the total transmitted flux is 

T(U, x) + me-@. (3) 
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The conservation law requires that 

7rU = ~(24, x) + ~(u, x) + rue-x/u. (4) 

This serves as a convenient check on numerical values of p and 7. 

2.2. Approximate Formulas of Gavallas and Kagan 

Gavallas and Kagan [8] have developed formulas for reflected and transmitted 
fluxes for the case of conservative scattering and normal incidence. They assumed 
that the intensities have the form 

A + Bcos8, 

where 0 is the polar angle. Their final expressions for the fluxes, obtained with 
the use of the Bubnov-Galerkin method, are 

PC& x> = = 
--I +3x+e-” 

4+3x ’ 

7G(1 x) = 7T 5 - 5e-” - 3xe-” 
, 4+3x . 

(5) 

3. RAYLEIGH SCATTERING IN A SLAB 

Reflected and transmitted fluxes for Rayleigh slabs have been determined by 
Kahle, using a theory for singular integral equations. We refer the reader to her 
paper [12] and the references cited therein. The fluxes determined by Kahle are 
denoted P~(u, X) and T~(u, x), These fluxes could also have been obtained via an 
initial-value problem for Riccati equations [ 131. 

4. ONE-DIMENSIONAL MODEL 

Next we consider a simple model of isotropic scattering in a rod. Let a unit of 
energy per unit time be incident on the right end of a rod of length x. An analysis 
by invariant embedding leads to the equation for the reflected flux, s(x), 

s(x) = *. (6) 
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To make the proper comparisons with the other models, we set the incident flux 
equal to n-u, and the effective length equal to x/u. Then the reflected flux is 

PO64 4 = md XiU 
(XI4 + 2 

or 

p&4, x) = n-u --fL- x+224’ 

From the conservation Eq. (4), the transmitted flux is seen to be 

T&4, x) = 7ru [ 
2u 

x+2u - 
e-“D 

I * 

(7) 

(8) 

5. NUMERICAL RESULTS 

Computations for the conservative case (A 2: 1) in slab geometry are carried 
out with the invariant embedding equations for the slab. The order of the 
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FIG. 1. Fluxes diffusely transmitted through conservatively scattering slabs with various 
angles of incidence. The curves are for the isotropic scattering case, the dots for Rayleigh 
scattering. 
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quadrature formula, N, and the step size of integration, dx, are varied. The pairs 
of parameter values (N, dx) are (3,0.05), (3, O.Ol), (5,0.01), (7,0.01), and 
(7, 0.005). The effect of changing the step size from 0.01 to 0.005 when N = 7 is a 
change, at most, of one unit in the fifth significant figure. The same is true for 
N = 3 and the two step sizes tested. Both hold for thicknesses up to 50. The 
overall agreement among all of the trials is 3 to 4 decimal places. These calculations 
are performed on an IBM 7044 using a fourth-order Adams-Moulton integration 
routine. 

The invariant embedding numerical results quoted below are obtained with 
N = 7 and dx = 0.01. The computing time is 20 minutes for solving the system 
of 113 simultaneous ordinary differential equations on the interval 0 < x < 50. 

The formulas of Gavallas and Kagan are excellent approximations to the 
reflected and transmitted fluxes on the interval 0 ,< x < 50. The greatest discrep- 
ancy from the invariant imbedding calculation is 0.0102 at x = 2. For the most 
part, the discrepancy is in the order of 0.001. 

X 

FIG. 2. Fluxes reflected from conservatively scattering slabs with various angles of incidence. 
The curves are for the isotropic scattering case, the dots for Rayleigh scattering. 

Eight curves of diffusely transmitted flux are shown in Fig. 1 for the incident 
angles indicated. Note that the dots are plots of the values obtained by Kahle for 
Rayleigh scattering and incident angles 0, 60, and 88 (not 88.5) degrees. Kahle 
has also computed fluxes at x = 100. From this figure and by graphical inter- 
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polation, it is clear that the results coincide over all thicknesses up to 100. A similar 
conclusion can be drawn from Fig. 2 for reflected flux. 

A brief tabular survey of the comparisons among the four methods of deter- 
mining the reflected and diffusely transmitted fluxes is presented in Tables I and II. 

TABLE I 

A COMPARISON OF REFLECTED FLUXES 

X cos-lu (deg) 

0.15 0 
60 
88.5 

1.0 0 
60 
88.5 

10.0 0 
60 
88.5 

50.0 0 
60 
88.5 

PO Pl f’G PK 

0.2193 
0.2048 
0.0596 

0.2198 0.2194 
0.2054 
0.0446 - 

1.0723 1.0627 
0.7829 
0.0591 

0.2196 
0.2054 
0.059Sa 

1.0471 
0.7854 
0.0760 

1.0687 
0.7842 
0.0813" 

2.6179 2.6800 2.6796 2.6762 
1.4279 1.4110 1.4120 
0.0795 0.0756 0.1038" 

3.0206 3.0400 3.0396 
1.5400 1.5357 
0.0798 0.0790 - 

a cm-lu = 88.0 degrees. 

TABLE II 

A COMPARMN OF DIFFUSELY TRANSMITTED FLUXES 

X cos-lu (deg) 70 71 +G TK 

0.15 0 0.2184 
60 0.2022 
88.5 0.0200 

1.0 0 0.9387 
60 0.5728 
88.5 0.0039 

10.0 0 0.5235 
60 0.1428 
88.5 0.0004 

50 0 0.1208 
60 0.0308 
88.5 0.0001 

0.2178 
0.2018 
0.0351 

0.9136 
0.5754 
0.0208 

0.4618 
0.1599 
0.0044 

0.1031 
0.0357 
0.0010 

0.2182 0.2179 
- 0.2017 
- 0.0484" 

0.9232 0.9172 
- 0.5740 

0.0284" 

0.4619 0.4653 
0.1588 

- 0.0059" 

0.1020 - 
- 

o CQS-lu = 88.0 degrees. 
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6. DISCUSSION 

Let us summarize the results of this paper. Precision calculations for isotropic 
scattering and Rayleigh scattering in slabs have been performed. They have served 
to establish that certain simple formulas provide excellent approximations to the 
diffusely reflected and transmitted fluxes. Furthermore, they have shown that the 
external fluxes are virtually independent of the nature of the local scattering law, 
for the cases considered. 

Still lacking are physical and mathematical explanations of these flux equiv- 
alences. Note that, in the cases considered, the scattering diagrams were the 
same in the forward hemisphere as in the backward. It has been suggested that 
this symmetry must be an important factor [14]. 

The conservative nature of the scattering means that none of the energy is truly 
absorbed but that the energy is ultimately reflected or transmitted. The ratio of 
reflected to transmitted flux has here been shown to be dependent on the optical 
thickness and the direction of illumination, but very insensitive to the phase 
function. 
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